Экспоненциальное распределение времени. Экспоненциальное (показательное) распределение. Вероятность попадания случайной величины при показательном распределении

Экспоненциальный закон распределения называемый также основным законом надежности, часто используют для прогнозирования надежности в период нормальной эксплуатации изделий, когда постепенные отказы еще не проявились и надежность характеризуется внезапными отказами. Эти отказы вызываются неблагоприятным стечением многих обстоятельств и поэтому имеют постоянную интенсивность. Экспоненциальное распределение находит довольно широкое применение в теории массового обслуживания, описывает распределение наработки на отказ сложных изделий, время безотказной работы элементов радиоэлектронной аппаратуры.

Приведем примеры неблагоприятного сочетания условий работы деталей машин, вызывающих их внезапный отказ. Для зубчатой передачи это может быть действием максимальной нагрузки на наиболее слабый зуб при его зацеплении; для элементов радиоэлектронной аппаратуры - превышение допустимого тока или температурного режима.

Плотность распределения экспоненциального закона (рис. 1) описывается соотношением

f (x ) = λe −λ x ; (3)

функция распределения этого закона - соотношением

F (x ) = 1− e −λ x ; (4)

функция надежности

P (x ) = 1− F (x ) = e −λ x ; (5)

математическое ожидание случайной величины Х

дисперсия случайной величины Х

(7)

Экспоненциальный закон в теории надежности нашел широкое применение, так как он прост для практического использования. Почти все задачи, решаемые в теории надежности, при использовании экспоненциального закона оказываются намного проще, чем при использовании других законов распределения. Основная причина такого упрощения состоит в том, что при экспоненциальном законе вероятность безотказной работы зависит только от длительности интервала и не зависит от времени предшествующей работы.

Риc. 1. График плотности экспоненциального распределения

Пример 2. По данным эксплуатации генератора установлено, что наработка на отказ подчиняется экспоненциальному закону с параметром λ=2*10 -5 ч -1 . Найти вероятность безотказной работы за время t =100 ч. Определить математическое ожидание наработки на отказ.

Р е ш е н и е. Для определения вероятности безотказной работы воспользуемся формулой (5), в соответствии с которой

Математическое ожидание наработки на отказ равно

Случайная величина имеет равномерное распределение , если вероятность того, что она принимает любое значение в интервале, ограниченном минимальным числом а и максимальным числом b , постоянна. Поскольку график плотности этого распределения имеет вид прямоугольника, равномерное распределение иногда называют прямоугольным (см. панель Б на рис. 1).

Рис. 1. Три непрерывных распределения

Скачать заметку в формате или , примеры в формате

Функция плотности равномерного распределения задается формулой:

где а - минимальное значение переменной X , b - максимальное значение переменной X .

Математическое ожидание равномерного распределения:

(2) μ = (а + b ) / 2

Дисперсия равномерного распределения:

(3) σ 2 = (b a ) 2 / 12

Стандартное отклонение равномерного распределения:

Чаще всего равномерное распределение используется для выбора случайных чисел. При осуществлении простого случайного выбора предполагается, что каждое число извлекается из генеральной совокупности, равномерно распределенной в интервале от 0 до 1. Вычислим вероятность извлечь случайное число, превышающее 0,1 и меньше 0,3.

График функции плотности равномерного распределения для а = 0 и b = 1 изображен на рис. 2. Общая площадь прямоугольника, ограниченного этой функцией, равна единице. Следовательно, этот график удовлетворяет требованию, согласно которому, площадь фигуры, ограниченной графиком плотности любого распределения, должна равняться единице. Площадь прямоугольника, заключенная между числами 0,1 и 0,3, равна произведению длин его сторон, т.е. 0,2 х 1 = 0,2. Итак, Р(0,1 < X < 0,3) = 0,2 х 1 = 0,2.

Рис. 2. График плотности равномерного распределения; вычисление вероятности Р(0,1 < X < 0,3) для равномерного распределения при а = 0 и b = 1

Математическое ожидание, дисперсия и стандартное отклонение равномерного распределения при а = 0 и b = 1 вычисляются следующим образом:

Рассмотрим пример. Предположим, что моменты отказов устройства для контроля за чистотой воздуха равномерно распределены в течение суток.

  1. В некий день светлое время суток наступает в 5:55 и заканчиваться в 19:38. Какова вероятность того, что отказ оборудования устройства произойдет в течение светлого времени суток?
  2. Допустим, что с 22:00 до 5:00 устройство переходит в режим пониженного энергопотребления. Какова вероятность того, что отказ произойдет в указанный период времени?
  3. Предположим, что в состав устройства входит процессор, каждый час осуществляющий проверку работоспособности оборудования. Какова вероятность того, что отказ будет обнаружен не позднее, чем через 10 мин?
  4. Предположим, что в состав устройства входит процессор, каждый час осуществляющий проверку работоспособности оборудования. Какова вероятность того, что отказ будет обнаружен не раньше, чем через 40 мин?

Решение. 1. Поскольку в условии задачи сказано, что моменты отказов устройства равномерно распределены в течение суток, вероятность отказа в светлое время суток – есть доля этого времени суток. Р (отказа в светлое время суток) = 19:38 – 5:55 = 57,2%. Вычисления см. приложенный Excel-файл. Если представить разность окончания и начала светлого времени суток в процентном формате, то получим ответ – 57,2%. Хитрость заключается в том, что в Excel сутки – это единица, один час – 1/24, таким образом интервал времени меньше суток будет составлять процентную часть этих суток.

2. Р (отказа с 22:00 до 5:00) = 2:99 + 5:00 = 29,2%.

3. Р (обнаружения отказа не позднее, чем через 10 мин) = 10 / 60 = 16,7%

4. Р (обнаружения отказа не раньше, чем через 40 мин) = (60 – 40) / 60 = 33,3%

Экспоненциальное распределение

Экспоненциальное распределение является непрерывным, имеет положительную асимметрию и изменяется от нуля до плюс бесконечности (см. панель В на рис. 1). Экспоненциальное распределение оказывается весьма полезным в деловых приложениях, особенно при моделировании производства и систем массового обслуживания. Оно широко используется в теории расписаний (очередей) для моделирования промежутков времени между двумя запросами, которые могут представлять собой приход клиента в банк или ресторан быстрого обслуживания, поступление пациента в больницу, а также посещение Web-сайта.

Экспоненциальное распределение зависит только от одного параметра, который обозначается буквой λ и представляет собой среднее количество запросов, поступающих в систему за единицу времени. Величина 1/λ равна среднему промежутку времени, прошедшего между двумя последовательными запросами. Например, если в систему в среднем поступает 4 запроса в минуту, т.е. λ = 4, то среднее время, прошедшее между двумя последовательными запросами, равно 1/λ = 0,25 мин, или 15 с. Вероятность того, что следующий запрос поступит раньше, чем через X единиц времени, определяется по формуле (5).

(5) Р (время поступления запроса < X ) = 1 – e –λ x

где е - основание натурального логарифма, равное 2,71828, λ – среднее количество запросов, поступающих в систему за единицу времени, X – значение непрерывной величины, 0 < X < ∞.

Проиллюстрируем применение экспоненциального распределения примером 2. Допустим, что в отделение банка приходят 20 клиентов в час. Предположим, что в банк уже пришел один клиент. Какова вероятность того, что следующий клиент придет в течение 6 мин? В данном случае λ = 20, Х= 0,1 (6 мин = 0,1 ч). Используя формулу (5), получаем:

Р(время прихода второго клиента < 0,1) = 1 – е –20*0,1 = 0,8647

Таким образом, вероятность, что следующий клиент придет в течение 6 мин, равна 86,47%. Экспоненциальное распределение можно вычислить с помощью функции Excel =ЭКСП.РАСП() (рис. 3).

Рис. 3. Расчет экспоненциального распределения с помощью функции =ЭКСП.РАСП()

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 379–383


где λ – постоянная положительная величина.

Из выражения (3.1), следует, чтопоказательное распределение определяется одним параметром λ.

Эта особенность показательного распределения указывает на его преимущество по сравнению с распределениями , зависящими от боль­шего числа параметров. Обычно параметры неизвестны и приходится находить их оценки (приближенные значе­ния) разумеется, проще оценить один параметр, чем два или три и т. д . Примером непрерывной случайной вели­чины, распределенной по показательному закону , может служить время между появлениями двух последователь­ных событий простейшего потока.

Найдем функцию распределения показательного закона .

Итак

Графики плотности и функции распределения показа­тельного закона изображены на рис. 3.1.


Учитывая, что получим:

Значения функции можно находить по таблице.

Числовые характеристики показательного распределения

Пусть непрерывная случайная величина Χ рас­пределена по показательному закону

Найдем математическое ожидание , используя формулу её вычисления для непрерывной случайной величины:


Следовательно:

Найдем среднее квадратическое отклонение , для чего извлечем квадратный корень из дисперсии:

Сравнивая (3.4), (3.5) и (3.6), видно, что

т. е. математическое ожидание и среднее квадратическое отклонение показательного распределения равны между собой.

Показательное распределение широко применяетсяв различных приложениях финансовых и технических задач, например, в теории надежности.



4. Распределение «хи-квадрат» и распределение Стьюдента.

4.1 Распределение «хи-квадрат» (- распределение)

Пусть Χ i (ί = 1, 2, ..., n)-нормальные незави­симые случайные величины , причем математическое ожи­даниекаждой из нихравно нулю , а среднее квадратическое отклонение - единице .

Тогдасумма квадратов этих величин

распределена по закону с степенями свободы , если же эти величины связаны одним линейным соотношением, например , то число степеней свободы

Распределение хи-квадрат нашло широкое применение в математической статистике.

Плотность этого распределения


где - гамма-функция, в частности .

Отсюда видно, чтораспределение хи-квадрат опре­деляется одним параметром - числом степеней свободы k.

С увеличением числа степеней свободыраспределение хи-квадрат медленно приближается к нормальному.

Хи-квадрат распределение получается, если в законе распределения Эрланга принять λ = ½ и k = n /2 – 1.

Математическое ожидание и дисперсия случайной величины, имеющей хи-квадрат распределение, определяются простыми формулами, которые приведем без вывода:

Из формулы следует, что при хи-квадрат распределение совпадает с экспоненциальным распределением при λ = ½ .

Интегральная функция распределения при хи-квадрат распределенииопределяетсячерез специальные неполные табулированные гамма-функции

На рис.4.1. приведены графики плотности вероятности и функции распределения случайной величины, имеющей хи-квадрат распределениепри n = 4, 6, 10.

Рис.4.1. а )Графики плотности вероятности при хи-квадрат распределении


Рис.4.1. б)Графики функции распределения при хи-квадрат распределении

4.2 Распределение Стьюдента

Пусть Z – нормальная случайная величина, причём

а V – независимая от Z величина, которая распределена по закону хи-квадрат с k степенями свободы.Тогда величина:


имеет распределение, которое называют t -распределением или распределением Стьюдента (псевдоним английского статистика В. Госсета),

с k = n - 1 степенями свободы (n - объём статистической выборки при решении задач статистки).

Итак , отношение нормированной нормальной величинык квадратному корню из независимой случайной вели­чины, распределенной по закону «хи квадрат» с k степе­нями свободы , деленной на k, распределено по закону Стьюдента с k степенями свободы.

Плотность распределения Стьюдента:

В исходных факторах, мы свяжем факторы 1 - 7 с факторами из раздела VI. 3 в том порядке, в котором они записаны, т. е. фактор 1 - это усечение, фактор 2 - симметрия и т. д. Затем мы свяжем уровни + и - факторов в табл. 4 с двумя уровнями факторов VI. 3 случайным образом. Этот случайный порядок был достигнут с помощью таблицы случайных чисел и сравнением этих чисел с 1/2. Результаты этой процедуры показаны в табл. 5. Совмещение табл. 4 и 5 дает план в исходных факторах, приведенный в табл. 6, где Л1, (i = 1,. .., 4) обозначают неизвестные случайные величины , имеющие экспоненциальное распределение с параметром Ьг - Ь. В качестве примера рассмотрим комбинацию 1 в табл. 6. Факторы 1 и 2 находятся на уровне + в табл. 4. Следовательно, из табл. 5 мы должны взять усеченное, асимметричное распределение с поднятыми хвостами. В табл. 1 мы видим, что это распределение - экспоненциальное распределение случайной величины х. Фактор 6 находится на уровне  

В нашем случае для технологических изделий объективные причины не позволяют пользоваться этими законами распределения . Во-первых, условием получения нормального закона являются совместные действия множества случайных факторов , ни один из которых не является доминирующим. Этому не соответствуют условия эксплуатации и выбраковки изделий технологического назначения, где обязательно фигурируют доминирующие факторы. Во-вторых, для экспоненциального закона обязательны условия ординарности, стационарности и последействия, которые зачастую не выполняются для этих изделий. В частности, поток отказов их нельзя считать стационарным вследствие меняющегося во времени вероятностного режима его.  

Такая информация отражает сложившиеся условия производственных процессов и поэтому является выборкой из генеральной совокупности . На основании закона больших чисел можно утверждать, что если генеральная совокупность подчиняется определенному закону распределения , то и выборка из этой совокупности при достаточно большом ее объеме будет подчиняться этому закону. Чаще всего этот закон неизвестен, и определение его вызывает значительные трудности. В таких случаях предпочтение отдается хорошо известным законам распределения , чаще всего-экспоненциальному и нормальному.  

Под словом случайно будем понимать, что вероятность прибытия на АЗС одного автомобиля за любой малый промежуток времени , начинающийся в произвольный момент времени / и имеющий длину т, с точностью до пренебрежимо малых величин пропорциональна т с некоторым коэффициентом пропорциональности X > 0. Величину К можно интерпретировать как среднее число автомобилей, появляющихся на станции за единицу времени, а обратную ей величину 1Л, - как среднее время появления одного автомобиля. Вероятность того, что за этот промежуток времени не прибудет ни одного автомобиля, считается приблизительно равной 1 - т, а вероятность прибытия двух или более автомобилей - величиной, пренебрежимо малой по сравнению со значением Ял. Из выдвинутых предположений можно получить следующие выводы. Во-первых, промежутки времени / между двумя последовательными прибытиями автомобилей удовлетворяют экспоненциальному распределению  

Потери, возникающие в результате работы средств автоматизации за этот промежуток, могут быть подсчитаны на основе использования теории надежности, согласно которой внезапные отказы определяются как выход системы из строя вследствие возникновения непредвиденных, внезапных концентраций внешних нагрузок и внутренних напряжений, превышающих расчетные. Если часть элементов и соединений изготовлена или отремонтирована некачественно, то они будут отказывать при более низких нагрузках. Поэтому отказы дефектных элементов распределяются экспоненциально (рассматривается пуассоновский характер распределения внезапных выходов из строя), со средней наработкой в несколько раз меньшей, чем у остальных элементов.  

Экспоненциальное распределение. Этому распределению, как правило, подчиняются наработки внезапных отказов (т. е. отказов вследствие скрытых дефектов технологии) и распределение времени между двумя последовательными отказами, если изделия работают в установившемся режиме .  

Рассмотрим случай, когда исследуемый параметр распределен по экспоненциальному закону.  

Я. Б. Шор дает следующую формулу для определения доверительного интервала для генеральной средней в случае распределения случайной величины по экспоненциальному закону  

Несмотря на кажущуюся необременительность условий, при которых получено последнее выражение, в теоретическом отношении для ряда интересных случаев они оказываются невыполнимыми. Это происходит, когда производная g (x) в точке х = v обращается в бесконечность. В частности, так обстоят дела с двусторонним экспоненциальным распределением, с которым мы уже встречались в примерах 2 и 3 из . В одном варианте построения оптимального  

В этой главе мы рассмотрим наиболее употребительные законы распределения случайных величин , а также основные параметры этих законов. Будут даны методы поиска функции распределения вероятности случайной величины в случае неинтегрируемой плотности вероятности , а также алгоритмы получения последовательностей случайных величин с произвольным законом распределения , что необходимо при моделировании случайных процессов . Особое внимание будет уделено обобщенному экспоненциальному распределению, которое наиболее пригодно при изучении ценообразования активов.  

Одним из важнейших распределений, встречающихся в статистике, является нормальное распределение (распределение Гаусса), относящееся к классу экспоненциальных. Плотность вероятности этого распределения  

Еще одним типом экспоненциального распределения, наряду с нормальным, является распределение Лапласа , плотность которого выражается формулой  

Обобщенное экспоненциальное распределение.  

Выше в этой главе были рассмотрены два вида экспоненциальных распределений Гаусса и Лапласа. У них много общего они симметричны, зависят от двух параметров (//, сг),  

В VI. 2 мы коротко опишем ММР и цель эксперимента, т. е. изучение чувствительности ММР к нарушению его предпосылок. В VI.3 мы подробно обсудим различные факторы, которые могут влиять на эту чувствительность. Ненормальность распределения мы определим как фактор 1. Этот фактор описывает возможность или невозможность для случайных величин стать меньше заданной константы (так называемый фактор усеченное распределения) асимметрию и хвосты распределения мы примем фактором 2. Комбинируя факторы 1 и 2, мы выберем четыре типа распределений (экспоненциальное, Эрланга, взвешенную разность двух случайных величин с экспоненциальным распределением и сумму разностей случайных величин с экспоненциальным распределением). Неоднородность дисперсий будет обозначена как фактор 3. Это означает, что дисперсия наилучшей генеральной совокупности (afki) может быть либо больше, либо меньше дисперсии конкурирующей худшей совокупности (при наименее благоприятной ситуации). Фактор 4 измеряет, сильно ли различаются или не различаются вовсе эти две дисперсии. Фактор 5 показывает, являются ли дисперсии худших генеральных совокупностей (в наименее благоприятной ситуации) равными или они все различны. Фактор 6 определяет число совокупностей (три или семь) фактор 7 определяет расстояние 8 = 6 между наилучшей и следующей за ней совокупностями в наименее благоприятной ситуации . Фактор Р, гарантирующий минимальное значение вероятности правильного выбора, рассматривается  

Такая информация является выборкой из генеральной, совокупности, имеющей определенный закон распределения . Чащевсе-го этот закон неизвестен и определение его вызывает зиждительные трудности. В таких случаях предпочтение отдается х >ошо известным законам распределения , чаще всего - экспоненциальному и нормальному.  

законов распределения . В частности, при b = 1 он превращается в экспоненциальный закон , при b = 2 - в закон Релея, при b - = 3,25 - близок к нормальному. Зто обстоятельство позволяет использовать один и тот математический аппарат при исследовании самых различных потоков отказов изделий. Кроме того, этот  

В ряде исследований утверждается, что для отказов технических изделий вследствие износа, усталости, коррозии и старения вполне удовлетворительным будет нормальный или логарифмически нормальный закон распределения , в случае же внезапных отказов, возникающих вследствие случ-айных перегрузок, аварий и т. д., подходит экспоненциальный закон распределения .  

Универсальность данного закона объясняется тем, что при различных значениях параметра b он приближается к ряду законов распределения . В частности, при Ь = он превращается в экспоненциальный закон , при 6=2 - в закон Релея, при Ь = = 3,25 - близок к нормальному.  

В данном примере мы рассмотрели самый простой случай пуассоновский входной поток , экспоненциальное время обслуживания , одна обслуживающая установка. На самом деле, в реальности, и распределения бывают значительно сложнее, и АЗС включают в себя большее число бензоколонок. Для того чтобы упорядочить классификацию систем массового обслуживания , американский математик Д. Кен-далл предложил удобную систему обозначений, широко распространившуюся к настоящему времени. Тип системы массового обслуживания Кендалл обозначил с помощью трех символов, первый из которых описывает тип входного потока , второй - тип вероятностного описания системы обслуживания , а третий - количество обслуживающих приборов. Символом М он обозначал пуассоновское распределение входного потока (с экспоненциальным распределением интервалов между заявками), этот же символ применялся и для экспоненциального распределения продолжительности обслуживания. Таким образом, описанная и изученная в этом параграфе система массового обслуживания имеет обозначение М/М/1. Система M/G/3, например, расшифровывается как система с пуассоновским входным потоком , общей (по-английски - general) функцией распределения времени обслуживания и тремя обслуживающими устройствами. Встречаются и другие обозначения D -детерминированное распределение интервалов между поступлением заявок или длительностей обслуживания, Е - распределение Эрланга порядка п и т. д.  

На основе изложенных здесь методов построения последовательностей случайных чисел с различными распределениями можно построить процедуры randl и rand2, использовавшиеся в программе на языке алгол для расчетов по модели автозаправочной станции . Если используемые случайные интервалы между автомобилями и продолжительности обслуживания имеют экспоненциальное распределение, то лучше использовать метод обратных функций , а если некоторое эмпирическое распределение, то - метод, основанный на запоминании дискретных значений в оперативной памяти ЭВМ.  

Перейдем к описанию времени обслуживания автомобиля. Поскольку водители берут разное количество бензина и различаются между собой по сноровке, то время обслуживания вряд ли можно считать постоянным. Пусть вероятность того, что обслуживание автомобиля, находящегося на заправке в любой момент t, будет завершено в малом интервале U, f + rJ, приблизительно равна JLIT, где и > 0. Вероятность того, что обслуживание за этот промежуток времени не закончится, считается приблизительно равной 1 - цт, а вероятность того, что будет закончено обслужи-. ванне двух и более автомобилей, - пренебрежимо малой величиной. Тогда

Непрерывная случайная величина $X$ подчиняется показательному (экспоненциальному) закону распределения вероятностей, если ее плотность распределения вероятностей $f\left(x\right)$ имеет следующий вид:

$$f(x)=\left\{\begin{matrix}
0,\ x < 0\\
\lambda e^{-\lambda x},\ x\ge 0
\end{matrix}\right..$$

Тогда функция распределения:

$$F(x)=\left\{\begin{matrix}
0,\ x < 0\\
1-e^{-\lambda x},\ x\ge 0
\end{matrix}\right.$$

Графики функций плотности $f\left(x\right)$ и распределения $F\left(x\right)$ представлены на рисунке:

Для показательного закона распределения числовые характеристики могут быть вычислены по известным формулам. Математическое ожидание и среднее квадратическое отклонение равны между собой и равны $1/\lambda $, то есть:

$$M\left(X\right)=\sigma \left(X\right)={{1}\over {\lambda }}.$$

Дисперсия :

$$D\left(X\right)={{1}\over {{\lambda }^2}}.$$

Параметр распределения $\lambda $ в статистическом смысле характеризует среднее число событий, наступающих в единицу времени. Так, если средняя продолжительность безотказной работы прибора равна $1/\lambda $, то параметр $\lambda $ будет характеризовать среднее число отказов в единицу времени. Примерами случайных величин, подчиненных показательному закону распределения, могут быть:

  • Продолжительность телефонного разговора;
  • Затраты времени на обслуживание покупателя;
  • Период времени работы прибора между поломками;
  • Промежутки времени между появлениями автомашин на автозаправочной станции.

Пример . Случайная величина $X$ распределена по показательному закону $f\left(x\right)=\left\{\begin{matrix}
0,\ x < 0\\
5e^{-5x},\ x\ge 0
\end{matrix}\right.$. Тогда математическое ожидание $=$ стандартное отклонение $\sigma (X)=1/\lambda =1/5=0,2$, дисперсия $D(X)=1/{\lambda }^2=1/25=0,04.$

Пример . Время работы прибора - случайная величина $X$, подчиненная показательному распределению. Известно, что среднее время работы данного прибора составляет $500$ часов. Какова вероятность того, что данный прибор проработает не менее $600$ часов?

Математическое ожидание случайной величины $X$ равно $M\left(X\right)=500=1/\lambda $, отсюда параметр распределения $\lambda =1/500=0,002.$ Можем записать функцию распределения:

$$F(x)=\left\{\begin{matrix}
0,\ x < 0\\
1-e^{-\lambda x}=1-e^{-0,002x},\ x\ge 0
\end{matrix}\right.$$

Тогда вероятность того, что прибор проработает менее $600$ часов, равна:

$$P\left(X\ge 600\right)=1-P\left(X < 600\right)=1-F\left(600\right)=1-\left(1-e^{-0,002\cdot 600}\right)\approx 0,301.$$